

SPECIFICATION

Item no.: T60404-N4644-X101

K-no.: 50 A Current Sensor-Module

For the electronic measurement of currents: DC, AC, pulsed, mixed ..., with a galvanic Isolation between the primary circuit (high power) and the secondary circuit (electronic circuit)

Date: 24.02.2014

2

Standard type Customers Part no.: Page 1 of

Customer: Description

- Closed loop (compensation)
 Current Sensor with magnetic field probe
- Printed circuit board mounting
- Casing and materials UL-listed

Characteristics

- Excellent accuracy
- Very low offset current
- Very low temperature dependency and offset current drift
- · Very low hysteresis of offset current
- Low response time
- · Wide frequency bandwidth
- Compact design

Applications

Mainly used for stationary operation in industrial applications:

- AC variabel speed drives and servo motor drives
 - Static converters for for DC motor drives
- Battery supplied applications
- Switched Mode Power Supplies (SMPS)
- Power Supplies for welding applications
- Uninterruptable Power Supllies (UPS)

mm

Electrical data - Ratings

I _{PN}	Primary nominal r.m.s. current	50	Α
R_{M}	Measuring resistance	15 200	Ω
I _{SN}	Secondary nominal r.m.s. current	25	mA
ΚN	Turns ratio	1:2000	

Accuracy - Dynamic performance data

		min.	typ.	max.	Unit
I _{P,max}	Max. measuring range @ R_M =15 Ω	-165		+165	Α
X*	Accuracy @ I _{PN} , T _A = 25°C		0,1	0,5	%
ϵ_{L}	Linearity			0,1	%
I ₀ *	Offset current @ I _P =0, T _A = 25°C		0,02	0,05	mA
t _r	Response time			3	μs
$\Delta t (I_{P,max})$	Delay time at di/dt = 100 A/µs			1	μs
f	Frequency bandwidth	DC100			kHz

General data

		min.	typ.	max.	Unit
T_A	Ambient operating temperature	-40		+85	°C
Ts	Ambient storage temperature	-40		+85	°C
m	Mass			30	g
V_{C}	Supply voltage	±14,25	±15	±15,75	V
I _C	Current consumption			18	mA
V_b	Rated voltage acc. to EN50178				
	Reinforced insulation				
	Insulation material group 1, Pollution degree 2,				

Rated voltage: Mains supply (effective) 600 V
Non Mains supply (DC) 800 V

Creepage and clearance distance

Max.duration of peak currents at definied temperatures

T _A	50	70	85	°C
Ι _P	120	100	50	Α
I _{P,max}	165	165	160	Α
R _M	15	15	20	Ω

All data marked with * is verified by final inspection, other values are typetested.

Date	Name	Isuue	Amendment						
24.02.14	KRe.	84	Marking char	rking changed acc to UL. 4644X101 → 4644-X101. CN-848					
07.08.13	KRe.	84	Mechancial o	echancial outline: marking with UL-sign. CN-635					
Hrsg.: KB-E		Bea	arb: Le.		KB-PM: KRe.			freig.: HS	
editor		designer			check	1		released	

Additional Information

Item No.: T60404-N4644-X101

K-No.: 50 A Current Sensor Module

For the electronic measurement of currents: DC, AC, pulsed, mixed ..., with a galvanic Isolation between the primary circuit (high power) and the secondary circuit

Date: 24.02.2014

Customers Part No.: Page 1 of 3

Customer: Description

- Closed loop (compensation)
 Current Sensor with magnetic field probe
- Printed circuit board mounting
- Casing and materials UL-listed

Characteristics

- · Excellent accuracy
- · Very low offset current
- Very low temperature dependency and offset current drift
- · Very low hysteresis of offset current
- · Low response time
- · Wide frequency bandwidth
- · Compact design

Applications

Mainly used for stationary operation in industrial applications:

- AC variabel speed drives and servo motor drives
- Static converters for for DC motor drives
- · Battery supplied applications
- Switched Mode Power Supplies (SMPS)
- Power Supplies for welding applications
- Uninterruptable Power Supplies (UPS)

Electrical Data

	<mark>min.</mark>	typ.	max.	Unit
V_{Ctot}	Maximum supply voltage (without function)		±18	V
R_S	Secondary coil resistance @ T _A =85°C		120	Ω
X_{Ti}	Temperature drift of X @ T _A = -40 +85 °C		0,1	%
I _{0ges}	Offset current (including I ₀ , I _{0t} , I _{0T})		0,05	mA
l _{Ot}	Offset current drift I ₀		0,05	mA
I _{OT}	Offset current temperature drift I ₀ @ T _A = -40+85°C		0,05	mA
I _{0H}	Hyteresis current @ I _P =0, caused by primary current 3 x I _{PN}		0,075	mA
i _{oss}	Offest ripple		1	mA
$\Delta I_0/\Delta V_C$	Supply voltage rejection ratio		0,01	mA/V
C _k	Maximum possible coupling capacity primary – secondary		9	pF
	Mechanical Stress according to M3209/3 Settings: 10 – 2000 Hz, 1 min/Oktave, 2 hours		2g	

Inspection (Measurement after temperature balance of the samples at room temperature)

K _N (N1/N2)*	(V)	M3011/6:	Transformation ratio (I₁=5A, 40-80 Hz)	= 1 : 2000 ±	0,5 %	
I ₀ *	(V)	M3226:	Offset current	< 0,05	mA	
V _d *	(V)	M3014:	Test voltage, rms, 1s	3	kV	

Type Testing

 $\frac{\text{HV transient test according to M3064}}{\text{Pin 1 - 3 to Primary conductor}}$ Settings: $V_{d,max} = 8 \text{ kV}$

1,2 µs / 50 µs-waveform

3 in a cycle of t = 10 seconds with changing polarity

Test voltage and partial discharge voltage according to M3024

 $V_d = 4,4 kV$

Pin 1 - 3 to Primary conductor $V_e \geq 1,0$

All data marked with * is verified by final inspection, other values are typetested.

Datum	Name	Index	Änderung						
24.02.14	KRe	84	Date updated	e updated. CN-848					
07.08.13	KRe.	84	Applicable do	pplicable documents: UL-File E169271 added. VDE-registration cancelled. ÄA-635					
		_	arb: Le.		KB-PM: KRe.			freig.: HS released	

60s

kV

Additional Information

Item No.: T60404-N4644-X101

K-No.:

Customer:

50 A Current Sensor Module

For the electronic measurement of currents: DC, AC, pulsed, mixed ..., with a galvanic Isolation between the primary circuit (high power) and the secondary circuit

Date: 24.02.2014

Customers Part No.: Page 2 of 3

Limit curve of measurable current Îp(RM)

@ temperature of the component ≤ 85 °C turns ratio 1 : 2000

Maximum measuring range (µs-range)

Pulse behaviour at pulse duration= 500µs

The value for Ip, max indicated in the Specification is valid for currents from a few ms on. For shorter duration (e.g. short circuit current) the currents are transformed directly and can therefore be higher than Ip,max. This will curtail the accuracy but can be used for kick-offs.

Example: Avariable Offset ripple reduction means a low pass

The offset ripple can be reduced by an external low pass. Therefore a capacitance C_a must be switched parallel to R_M. The diagram shows the remaining value of the offset ripple (ioss(R_M · C_a)) relative to the value without external capacitance (ioss). In this case the response time is lengthened. It is calculated for :

$$t_r \leq t_r + 2.5 \cdot R_M \cdot C_a \text{ bzw. } f_g = \frac{1}{2\pi \cdot R_M \cdot C_a}$$

Applicable documents

Current direction: A positive output current appears at point I_s, by primary current in direction of the arrow.

Constructed, manufactored and tested in accordance with EN 50178 (VDE 0160) and agrees with the standards. Enclosures according to IEC529: IP50.

UL - file E169271, category XORU2 (transformers, construction only - component), UL 508

Hrsg.: KB-E	Bearb: Le.	KB-PM: KRe.		freig.: HS
editor	designer	check		released

Additional Information

Item No.: T60404-N4644-X101

K-No.: 50 A Current Sensor Module

For the electronic measurement of currents: DC, AC, pulsed, mixed ..., with a galvanic Isolation between the primary circuit (high power) and the secondary circuit

Date: 24.02.2014

Customer: Customers Part No.: Page 3 of 3

Explanation of several of the terms used in the tablets (in alphabetical order)

 $X_{ges}(I_{PN})$: The sum of all possible errors over the temperature range by measuring a current I_{PN} :

$$X_{ges} = 100 \cdot \left| \frac{I_{S}(I_{PN})}{K_{N} \cdot I_{SN}} - 1 \right|$$

X: Permissible measurement error in the final inspection at RT, defined by

$$X = 100 \cdot \left| \frac{I_{SB}}{I_{SN}} - 1 \right|$$

where I_{SB} ist he output DC value of an input DC current of the same magnitude as the (positive) rated current ($I_0 = 0$)

 $\epsilon_{\text{L}}\!:\qquad\qquad\text{Linearity fault defined by}\qquad\qquad \epsilon_{\,\,\text{L}}\!\!=\!100\cdot\left|\frac{I_{\scriptscriptstyle P}}{I_{\scriptscriptstyle PN}}-\frac{I_{\scriptscriptstyle Sx}}{I_{\scriptscriptstyle SN}}\right|$

Where I_P is any input DC and I_{Sx} the corresponding output term. I_{SN} : see notes of F_i ($I_0 = 0$).

X_{Ti}: Temperature drift of the rated value orientated output term. I_{SN} (cf. Notes on F_i) in a specified temperature range, obtained by:

$$X_{\text{Ti}} = 100 \cdot \left| \begin{array}{c} I_{\text{SB}}(T_{\text{A2}}) - I_{\text{SB}}(T_{\text{A1}}) \\ I_{\text{SN}} \end{array} \right|$$

 I_{OH} : Zero variation after overloading with a DC of fourfold the rated value ($R_M = R_{MN}$)

I_{0t}: Long term drift of I_o after 100 temperature cycles in the range -40 bis 85 °C.

 t_r : Response time, measured as delay time at $I_P = 0.9^{\circ}$ I_{Pmax} between a rectangular current and the output current.

 Δt (I_{Pmax}): Delay time between I_{Pmax} and the output current i_a with a primary current rise of di₁/dt = 100 A/ μ s.

All data marked with * is verified by final inspection, other values are typetested. This "Additional information" is no declaration of warranty according BGB §443.

Hrsg.: KB-E Bearb: Le. KB-PM: KRe. check freig.: HS released