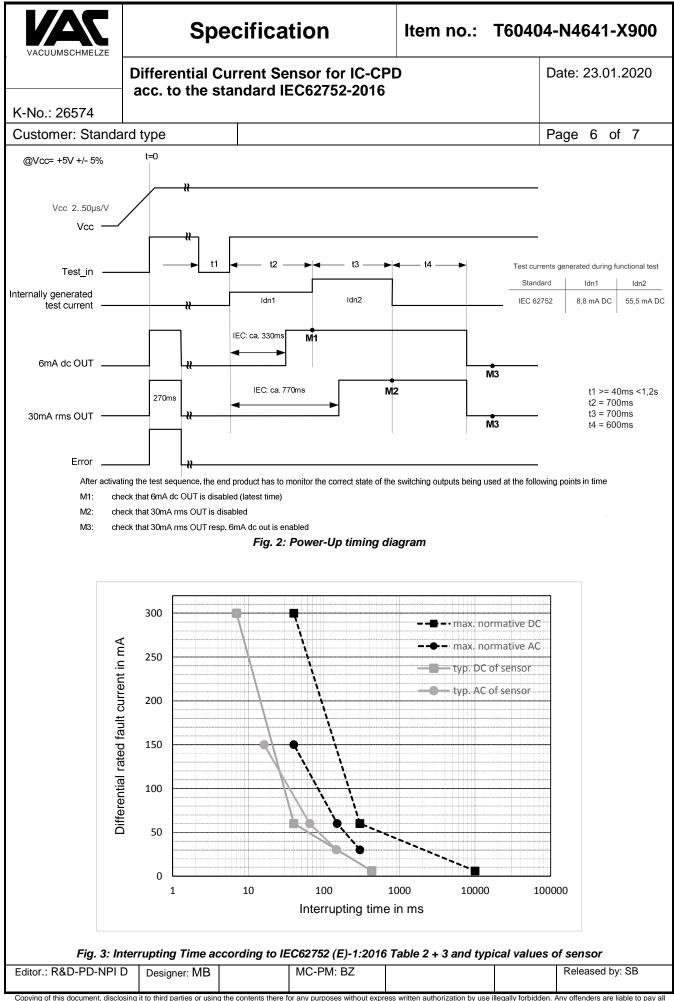
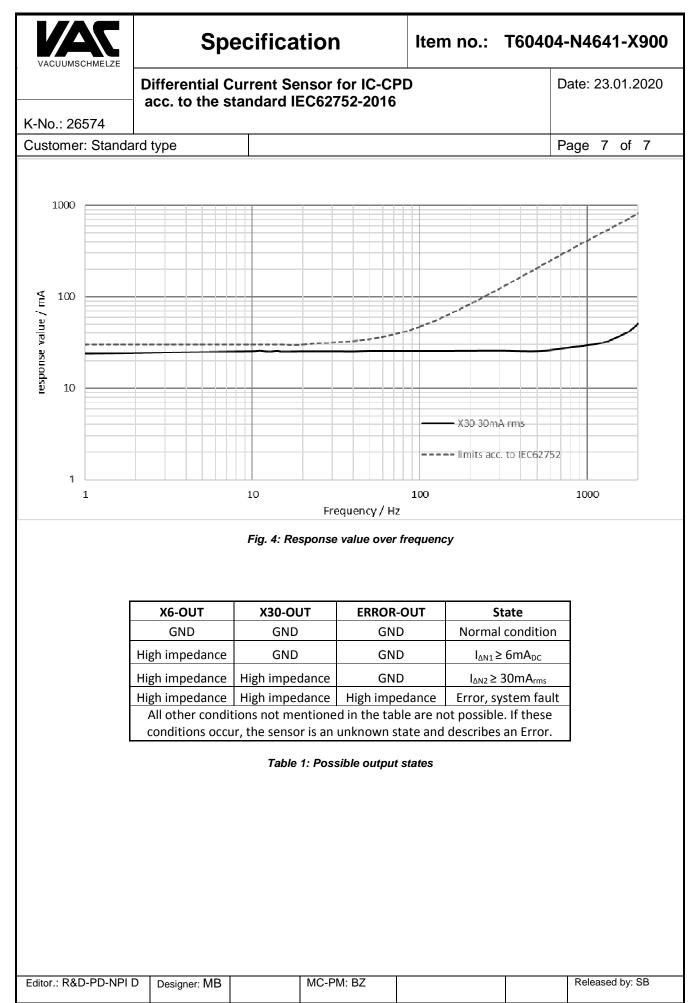

	Sp	ecifica	tion	Item	no.: T	60404-N	4641-X900
VACUUMSCHMELZE			nsor for IC-CP EC62752-2016	PD	Cho	Date	: 23.01.2020
K-No.: 26574							
Customer: Stand	ard type					Page	e 1 of 7
 Description Fluxgate current toroidal core PCB mounting 			uracy ed components en-collector outputs		j	Application Mainly used fo mobile applica IC-CPD Wallbox	r stationary and
Electrical data	– Ratings			min.	typ.	max	. Unit
I _P		I RMS currer	nt (1phase / 3phase	e)		80 / 4	0 A
	Rated residual		· ·	,	6		mA DC
I _{AN2}	Rated residual				30		mA rms
ΔN1, tolerance	Trip tolerance 1			4	5	6	mA DC
$I_{\Delta N2, tolerance}$	Trip tolerance 2	2		20		30(1) / 6	0 ⁽²⁾ mA rms
Spwm-out	Scaling factor o				3.33		%/mA
I _{∆RI,1/2} (Fig.1)	Recovery curre (absolute value	nt level for $I_{\Delta t}$			2.5 / 1	0	mA
					(1)	f = DC to 1kHz (2	2) f = 1kHz to 2kHz
<u> Accuracy – Dy</u>	namic perform	<u>ance data</u>					
I _{ΔN,max}	Max. measurir	ng range (pea	ak)	-300		+300) mA
Х	Resolution (@		°C)		< 0.2		mA
t _r (Fig.3)	Response time				Accor	ding to IEC6275	
f _{BW} (Fig.4)	Frequency rar	ige		DC		2	kHz
<u>General data</u>							
ϑ _A	Ambient opera			-40		85	°C
θ _{Storage}	Ambient stora	ge temperatu	re ⁽⁴⁾	-40		85	°C
m	Mass				21		g
V _{CC}	Supply voltage			4.8	5	5.2	V
	Consumption			38		45	mA
S _{clear, ps}	Clearance (pri	•	• /			le if isolated cab	
S _{creep, ps}	Creepage (pri EN/IEC 61709					le if isolated cab	le is used ⁽³⁾
FIT	(MIL-HDBK-21)		-	349)	fit
⁽⁴⁾ see VAC M-sheet ⁽⁵⁾ Constructed, man Isolated wires are Reinforced insula ⁽⁶⁾ The results are val	tion, Insulation material id under following cond	re inside cardboa accordance with imary conductors group 1, Pollution litions: 55°C mean	ard packaging	00m and overv mperature by	voltage catego continuous o	ory II. peration (8760h p	
The Sensor is s applications. Th fault current, PII current fault, PII	e Sensor detects N 3 will change it's Ns 3 and 4 will cha	d DC current AC and DC fa s state from a ange state fro	and can be used fo ault currents accor low level (GND) to om a low level (GN naled on PIN 1 (EF	ding to IE0 o high imp D) to a hig	C62752:20 edance lev jh impedar	16. In the ev vel. In event o	ent of a DC
Datum Name Inde							
23.01.20 BZ 84 16.01.20 BZ 84			p (Clearance, unisolate hanged. LV2 and LV4				ge.
Editor.: R&D-PD-NPI			MC-PM: BZ	<u>aeieren (966</u>	Shariyes III I		eleased by: SB


PIN description:

PIN no.	Description				
PIN 1 → ERROR-OUT (open collector output)	If no system fault is detected, the output PIN 1 is a low level (GND). If a system fault is detected, PIN 1 is high impedance. In this case, PINs 3 and 4 will be set to a high impedance state (see tab. 1).				
	A function test including an offset measurement (this value is stored in EEPROM for further calculation) is activated if this PIN is connected to GND for a period of 30ms to 1.2s. If the PIN is set to GND less than 30ms or more than 1.2s, no function test will be performed.				
PIN 2 \rightarrow TEST-IN (refer to Fig. 2)	Attention: During the functional test and offset measurement, no differential current may flow.				
	To ensure high accuracy of the sensor this test should be activated at regular intervals (e.g. at startup, before measuring).				
	If a push-pull switch is used, the voltage range must be 0V5V.				
PIN 3 → X6-OUT (open collector output)	If the residual current is below 6mA dc and no system fault occurs the output on PIN 3 is a low level (GND). In any other case output PIN 3 is in a high impedance state. If PIN 4 is high impedance, PIN 3 will also be set to high impedance (see tab. 1).				
PIN 4 → X30-OUT (open collector output)	If the residual current is below the 30mA rms and no system fault occurs the output on PIN 4 is a low level (GND). In any other case PINs 3 and 4 is in a high impedance state (see tab. 1).				
PIN 5 \rightarrow GND	Ground connection				
$PIN 6 \rightarrow VCC$	Positive supply voltage				
PIN 7 → PWM-OUT	Acc. to the DC component of residual current a duty-cycle with f=8kHz is generated. This is for monitoring purposes only and is not safety function! Refer to S _{PWM-OUT} = 3.33%/mA				
PIN 8 \rightarrow N.C.	Not connected				
.: R&D-PD-NPI D Designer: MB	MC-PM: BZ Released by: S				


VACUUMSCHMELZE	Sp	ecificatio	on	Item no.:	T604(04-N46	41-X90()
		Current Sense standard IEC		Р D		Date: 2	3.01.2020	
K-No.: 26574								
Customer: Standa	ard type					Page	3 of 7	
	ns power contacts		Differential Sensor for IC - CPD	+3.3V +3.3V PIN 2 		PE		
Absolute maximum		or-Emitter voltag	e (PINs 1-3 ar	ad 4)	Min T	<i>.</i>	lax Un 40 V	
	Collect	or current (PINs	1, 3 and 4)			Ę	50 m/	4
V _{CC}		um supply voltag			-0.3		7 V	
U _{MAX}	(AC rm	um rated voltage is)	e of primary cor	Iductors		2	50 V	
VTEST-IN, low	TEST-	IN Input Voltage,			0).6 V	
Exposure to these	these ratings may ca conditions for exten on of the device at th	ded periods may de	nage. egrade device reli		2.5		5 V	
Editor.: R&D-PD-NPI	D Designer: MB	M	C-PM: BZ			Releas	sed by: SB	

VACUUMSCHMELZE	Sp	ecificatio	on	Item no.:	T6040)4-N464	1-X900	
	Differential Current Sensor for IC-CPD						Date: 23.01.2020	
K-No.: 26574	acc. to the s	acc. to the standard IEC62752-2016						
Customer: Standa	rd type					Page 4	of 7	
Final Tests: (Me	asurements after to	emperature balanc	e of the samples a		re, SC=sig Min.	nificant cha Max.	racteristic) Unit	
Vcc	Supply	voltage			4.9	5.1	V	
	Supply c	-			38.0	45.0	mA	
TEST-IN (SC)	TEST-IN				2.8	3.3	V	
X6-OUT (normal)	X6-OUT	-			0	0.6	V	
X30-OUT (normal)	X30-OU	Γ voltage			0	0.6	V	
ERROR-OUT (nor	mal) ERROR	OUT voltage			0	0.6	V	
X6-OUT (activated) X6-OUT	voltage activated	@5V, 1kΩ (pull-up)*		4.9	5.1	V	
X30-OUT (activate	d) X30-OU	F voltage activated	l @5V, 1kΩ (pull-up))*	4.9	5.1	V	
ERROR-OUT	ERROR	OUT voltage activation	ated @5V, 1kΩ (pu	ill-up)*	4.9	5.1	V	
(activated) TC1	Trip curr	ent 1 – X6			4.5	5.4	mA	
TC2		ent 2 – X6			-5.4	-4.5	mA	
TC3		ent 3 – X30@50Hz	7		20	30	mA	
PWM-OUT (freque		JT frequency	-		7.8	8.2	kHz	
PWM-OUT (duty-c		JT duty-cycle @6n	nA DC		18	22	%	
LV1	• •	ues of break time -		C	0	700	ms	
LV3	Limit val	ues of break time -	X30-OUT@30m/	A, 50Hz	0	300	ms	
Product Tests	Acc. to	VAC sheet M323 ig tests differ fror	-		pas	sed		
PD	IEC610 UPDE N	amp heat, steady 00-4-1, EN60270 //3024, Partial dis on) *acc. to table), M3024 scharge voltage	: 1000 h	1.5		kV rms	
ESD	Air- and U=±200	contact discharg 0V, R=1500Ω, C Human Body Mo	ge; =100pF	14	±2.()	kV	
	IEC610 electron 1GHz 8 inductar	00-4-3 (Radiated nagnetic field imr 0%AM 1kHz, rec nce of >220µH in	l, radio-frequenc nunity) 20V/m 8 commend with th series of Vcc in	y, 0MHz – ie use of	pas			
EMC	disturba	00-4-6 (Immunity nces), recomment nce of >220µH in	nd with the use		pas			
		00-6-4 (Emission nents, conducted		dustrial	don	Should be done in end		
	CIVITOLI		a distuibalites)			lication		
A(f), Φ(f)	Amplitue 1% of I _F	de and phase res N or IAn	sponse over frec	quency	pas			
Impulse test	Monitor	ng of CS function est 100A to 5kA	n during the curr	rent	pas	sed		
Editor.: R&D-PD-NPI [Designer: MB	M0	C-PM: BZ			Release	ed by: SB	

Differential Current Sensor for IC-CPD Date: 23.01.2020 K:No:: 26574 Date: 23.01.2020 Customer: Standard type Page 5 of 7 Requalification Tests: (represented every year, Precondition act: to M3230) Unputer test voltage, colspan="2">The set voltage, colspan="2">Set voltage, colspan="2" Une volt	VACUUMSCHMELZE	Sp	ecifica	tion	Item no	.: T60	404-N464	41-X900
Customer: Standard type Page 5 of 7 Requalification Tests: (replicated every year, Precondition and: to MA238) Impulse test (1/2)/s/Quis waveform) 5.5 $U_{N, torm acc}$ M3064 PIN 1-8 vs: insulated primary wire 5.5 $U_{N, torm acc}$ M3064 PIN 1-8 vs: insulated primary wire 1.5 kV rms Uree M3014 Test voltage (estinction) 1.2 kV rms Partial discharge voltage (estinction) Partial discharge voltage (estinction) 1.5 kV rms Uree X1.875 M3024 PIN 1-8 vs: insulated primary wire 1.5 kV rms * IEC 61800-5-1:2007 Other instructions: 1.5 kV rms • IEC 61800-5-1:2007 Other instructions: 1.5 kV rms • IEC 61800-5-1:2007 Other instructions: 1.5 kV rms • IEC 61900-5-1:2007 Other instructions: 1.5 kV rms • IEC 61900-5-1:2007 Other instructions: 1.5 kV rms • IEC 61900-5-1:2007 Fail - and rise-time of Vcc 250µs/V Impute test (and the output the and the and the and the output the and the output the and the output th					2D		Date: 23	3.01.2020
Requalification Tests: (replicated every year, Precondition acc. to M3238) Impulse test (1,2)s/50js waveform) 5.5 Vir, primace M3064 PIN 1-8 vs. insulated primary wire 1.5 Us M3014 PIN 1-8 vs. insulated primary wire 1.5 KV rms Partial discharge voltage (extinction) PIN 1-8 vs. insulated primary wire 1.2 KV rms Partial discharge voltage (extinction) PIN 1-8 vs. insulated primary wire 1.5 Vrope M3024 PIN 1-8 vs. insulated primary wire 1.5 Vrope M3024 PIN 1-8 vs. insulated primary wire 1.5 vice to table 24 Partial discharge voltage (extinction) PIN 1-8 vs. insulated primary wire 1.5 kV rms *iec 61800-5-1:2007 Other instructions: • Temperature of the primary conductor should not exceed 105°C. • Vorting Test-Nt Unction test throms the at least 4.8V • Fail- and rise-time of Vcc 250µs/V Tegerestime • Tegerestime • S. 1.5 • S. 1.6 <th>K-No.: 26574</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	K-No.: 26574							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Customer: Standa	rd type					Page 5	5 of 7
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Regualification	Tests: (replicated e	verv vear Prec	ondition acc. to M3238	8)			
UgM3014Test voltage, 605 Partial discharge voltage (extinction) Partial discharge voltage (extinction) Partial discharge voltage (extinction) 		64 PIN	lse test (1.2) 1-8 vs. insula	us/50µs waveform ated primary wire)		5.5	kV rms
Under M3024 PIN 1-8 vs. insulated primary wire income to table 24 1.2 kV rms Very X1.875 M3024 PIN 1-8 vs. insulated primary wire income to table 24 1.5 kV rms *IEC 61800-5-1:2007 PIN 1-8 vs. insulated primary wire income to table 24 1.5 kV rms *IEC 61800-5-1:2007 Other instructions: 1.5 kV rms • Temperature of the primary conductor should not exceed 105°C. Vc. to table 24 Vc. to table 24 Structure of the primary conductor should not exceed 105°C. • Vc. during Test-IN function test must be at least 4.8V Fail- and rise-time of Vcc 250µs/V Structure of the primary conductor should not exceed 105°C. Condition for instructure of the primary conductor should not exceed 105°C. Gauge Structure of the primary conductor should not exceed 105°C. Structure of the primary conductor should not exceed 105°C. Condition instructure of the off to table 24 Output instructure of the primary conductor should not exceed 105°C. Structure of the primary conductor should not exceed 105°C. Output instructure of the primary conductor should not exceed 105°C. Structure of the primary conductor should not exceed 105°C.	U _d M30	14 Test PIN	voltage, 60s 1-8 vs. insula	ated primary wire			1.5	kV rms
Upp x 1.875 M3024 Partial discharge voltage (extinction) Partial discharge voltage (extinctio	U _{PDE} M30	24 PIN	1-8 vs. insula		ר)		1.2	kV rms
<section-header><section-header><section-header><list-item><list-item><list-item><list-item><section-header></section-header></list-item></list-item></list-item></list-item></section-header></section-header></section-header>	U _{PD} x 1.875 M30	Parti 24 PIN	al discharge 1-8 vs. insula		ו)		1.5	kV rms
<text><list-item><list-item><section-header></section-header></list-item></list-item></text>	* IEC 61800-5-1:20)7						
<text><text><figure><figure></figure></figure></text></text>	Other instruction	ons:						
$ f_{n} = \int_{0}^{n} \int_{0$	 Vcc durin 	g Test-IN function	test must be		105°C.			
$ f_{n} = \int_{0}^{n} \int_{0$	Figures:							
$\begin{split} & \int_{a} f_{a} $								
$\begin{array}{c} & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & &$								
If the trip-level $I_{\Delta N1}/I_{\Delta N2}$ is accomplished the output X6-OUT/X30-OUT will change it state from low-level (GND) to high impedance. Depending on the existence of the differential curent I_{Δ} , the outputs X6-OUT/X30-OUT will remain in this state until I_{Δ} fell below recovery threshold $I_{\Delta R11}/I_{\Delta R12}$.		conditic for X6-OUT and	n			\rightarrow_{t}		
Editor.: R&D-PD-NPI D Designer: MB MC-PM: BZ Released by: SB	low-level (GN	ID) to high impeda	mplished the ance. Depen	output X6-OUT/X ding on the existe	30-OUT will ch nce of the diffe	erential cur	ent I∆, the	
	Editor.: R&D-PD-NPI	D Designer: MB		MC-PM: BZ			Releas	ed by: SB

Copying of this document, disclosing it to third parties or using the contents there for any purposes without express written authorization by use illegally forbidden. Any offenders are liable to pay all relevant damages

